物理のこれだけはできないと「やばり」問題集

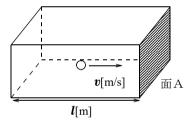
No.15 分子運動論編

つ"ツリヨキワメヨ

1. 気体の圧力と内部エネルギー

2. 二乗平均速度とエネルギー等分配の法則

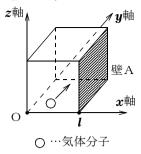
1 次の文章を読み、各問いに答えよ。


質量 m[kg]の気体分子が速さ v[m/s]で運動している。(図1)、(図2) で気体分子が1回衝突することで壁が受ける力積の大きさを求めよ。ただし、気体分子と壁の衝突は弾性的であるとする。

2 次の文章を読み、各問いに答えよ。

図のような断面積 $S[m^2]$, 高さ l[m]の直方体の容器内に気体が入っている。この気体中の粒子 1 つの運動に注目する。質量 m[kg]のこの粒子は図の向き(面Aに垂直)に速さ v[m/s]で運動している。ただし,気体粒子と壁の衝突は弾性的であるとする。

- (1) 気体粒子が面Aとの衝突で及ぼす力積の大きさを求めよ。
- (2) 面Aとの衝突してから再び同じ面に衝突するまでの時間を求めよ。
- (3) 気体粒子は壁Aに単位時間当たり何回衝突するか。
- (4) 気体粒子が面Aに及ぼす力の大きさを求めよ。
- (5) (4)から、面Aに働く圧力を求めよ。


3 次の文章を読み、各問いに答えよ。

1 辺が \boldsymbol{l} [m]の立方体があり、この中に質量 \boldsymbol{m} [kg]の気体分子が \boldsymbol{n} [mol]入っており、圧力と温度は \boldsymbol{P} [Pa]、 \boldsymbol{T} [K]となっている。ただし、気体粒子と壁の衝突は弾性的であり、気体定数を \boldsymbol{R} [J/mol·K]、アボガドロ数を \boldsymbol{N}_A とする。

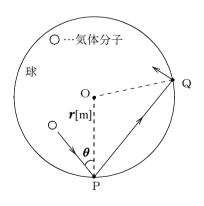
- (1) 気体が占める体積を求めよ。
- (2) 状態方程式を立てよ。
- (3) 気体分子の総数 N を求めよ。
- (4) ボルツマン定数 $\mathbf{k} = \frac{\mathbf{R}}{\mathbf{N}\mathbf{A}}$, **N** を用いて(2)を表し直せ。

$oldsymbol{4}$ 次の文章を読み、空欄に適切な式を入れよ。ただし、気体定数を $oldsymbol{R}[J/mol\cdot K]$ とする。

1辺 l[m]の立方体があり、この中に質量 m[kg]の気体分子が n[mol] 入っている。x, y, z 軸を図のようにとり、ある分子に注目すると速さはv[m/s]で、x 成分は v_x である。x=l 上の壁A(図の斜線が入った部分)にこの分子が1回の弾性衝突で与える力積は(1) $[kg \cdot m/s]$ となる。同じ分子が再び壁Aに衝突するのは、この衝突から(2)[s]後であるので単位時間当たりに(3)回衝突する。従って、壁Aが受ける力積は単位時間当たり(4) $[N \cdot s]$ となる。これが壁Aに働く力となる。これより、この分子が壁Aに与える圧力は(5)[Pa]と求まる。

次に、立方体中の全ての分子が及ぼす圧力 P[Pa]を考える。分子はそれぞれ異なる速さを持つので、速さの2乗の平均を $\overline{v^2}$ [m/s]とし、このx, \underline{y} , z分をそれぞれ $\overline{v_x^2}$, $\overline{v_y^2}$, $\overline{v_z^2}$ とする。 $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$, $\overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} = \overline{v^2}$ より、 $\overline{v^2} = (6) \times \overline{v_x^2}$ となる。また、アボガドロ数 N_A を用いると、気体分子の総数は(7)なので、全分子が壁Aに及ぼす力は(8)と求まる。これより、壁Aが受ける圧力 P は(9) [Pa]と求まる。

立方体中の気体分子が持つ全エネルギーを調べよう。気体分子 1 個がもつ運動エネルギーは $\overline{v^2}$ を用いて (10) なので,立方体内の全分子が持つ運動エネルギーは,立方体の体積 $V[m^3]$ を用いると (11) とも表せる。また,理想気体の状態方程式から,気体の温度を T[K] とすると,PV= (12) となるので,気体分子が持つ全エネルギーは (13) [J] と求まる。これが気体の内部エネルギーである。


5 次の文章を読み、各問いに答えよ。

体積 $V[m^3]$ の容器の中に圧力 P[Pa],温度 T[K] の単原子分子気体 n[mol] が入っている。この気体の内部エネルギー U[J] と分子の総数 N から気体分子 1 個当たりのエネルギー ε が導出できる。ただし,気体定数を $R[J/mol\cdot K]$,アボガドロ数を N_A とする。また,酸素,水素原子の原子量はそれぞれ 16,1 である。

- (1) **U** を求めよ。 {**n**, **R**, **T**}
- (2) **N**を求めよ。{**n**, **N**_A}
- (3) **を**を求めよ。{**N**_A, **R**, **T**}
- (4) 気体分子の分子量を M として、自乗平均速度 $\sqrt{v^2}$ を求めよ。
- (5) 同じ温度で、酸素分子の自乗平均速度は水素分子の何倍か。ただし、酸素分子、水素分子ともに理想気体として扱い、2原子分子理想気体の内部エネルギーが $\frac{5}{2}$ nRTで与えられることを用いて考えること。

【チャレンジ問題】

6 次の文章を読み、各問いに答えよ。ただし、気体定数を $R[J/mol\cdot K]$ 、アボガドロ数を N_A とする。

